
PLANT IDENTIFICATION AND CONTROL USING A NEURAL

CONTROLLER BASED ON REFERENCE MODEL.

Cosme Rafael Marcano-Gamero
Systems Engineer (Universidad de los Andes, 1986)

Magíster Scientiarum in Electronics Engineering (UNEXPO, 2004)
Professor at Electronics Department of the

Universidad Nacional Experimental Politécnica “Antonio José de Sucre” (UNEXPO)
Puerto Ordaz – Venezuela.
cosmemarcano@gmail.com

Abstract. Plant or process identification in order

to put it under control has always been a problem

hard to face up, due to the no linearity of a real

process. In this work, Neural Control theory is

applied to identify and control a plant conformed

by two subsystems of second order which

alternate their operation on a constant time base.

Firstly, a neural network is trained to learn the

plant behavior. Once trained, this network is

integrated to the rest of the system in order to

jointly operate with another neural network which

will serve as a controller. Obtained results permit

us assure the actual possibility of using neural

networks to identify and controlling this kind of

plant. However, special interest must be pay in the

controller fine adjustment, in order to minimize

the steady state error.

Key words: Neural Control, Plant Identification,

Neural Controller Training.

1. INTRODUCTION

Present work consists of a neural control

application on a non linear plant, based on the

reference model technique. Firstly, a neural

network is designed to identify the plant, i.e., the

neural network ‘learns’ the plant behavior through

some kind of training, and this knowledge is then

used to generate an output signal which is

compared with the actual plant output. This

comparison is fed back and inputted to another

neural network which will act as the controller.

This neural controller is designed in such a way

that makes the plant output to follow the output of

a reference model, which dynamics be well

known. Plant under consideration is described in

Sec 2, and it is conformed by two subsystems

which alternate each 50s [1]. In Sec. 2, the plant

will be described, in such a way a proper neural

network design and parameterization be possible

to do, as explained in Sec. 3. Another neural

network will be trained in order to operate as a

plant’s controller, taking into account the behavior

of a reference model, which dynamic is well

known. Results are obtained using Matlab 7.1,

through numerical simulations. They are presented

and analyzed in Sec. 4. Finally, in Sec. 5, some

conclusions are presented. It is important to note

that the plant definition describe a highly

nonlinear system over which neural control

strategy looks appropriate to be used for control

purposes.

2. PLANT DESCRIPTION.

Plant under consideration has two subsystems

which alternate each 50s. Subsystems 1 and 2 are

given by the equations systems (1) and (2),

respectively:

Txxy

u
x

x

x

x

][]01[

0

1

00

11

21

2

1

2

1

=

+

−
=

&

&

 (1)

Txxy

u
x

x

x

x

][]11[

0

1

10

01

21

2

1

2

1

=

+

−

−
=

&

&

 (2)

where][21 xx is the so-called state vector; y

designates the output plant; u is a scalar control

function. Both, subsystem 1 and 2, are of second

order we can see the subsystems poles and zeros

in order to find out their particular dynamics. As

we know from the control theory, poles can be

calculated by solving det(sI-A)=0, where A

designates the so-called system matrix or the state-
space matrix. In doing so, we get that the poles of

the subsystem 1 are }0,1{2,1 −=s and subsystem

2 has two identical poles in -1. On the other hand,

mailto:cosmemarcano@gmail.com

zeros of subsystem 1 is at ∞ , whereas the second

subsystem has zeroes at }1,{2,1 −∞=z .

Precisely, the zero located in -1 will cancel the

pole located at the same value and, in

consequence, this subsystem will behave as a first

order one.

3. NEURAL CONTROLLER DESIGN
BASED ON REFERENCE MODEL.

There are various neural control strategies.

Neural Networks Toolbox of Matlab 7.1 offers

three of these strategies: Model Reference

Controller, NARMA-L2 controller type and

Predictive Neural Network (NN Predictive).

Here, we will utilize the Reference Model one that

consists in choosing a plant model which

description and dynamic are well known in order

to make the neural networks which will act as a

controller learns, through proper training, its

behavior, in order to drive the plant to behave as

the reference model. A generic neural controller

based in model reference simulink diagram is

shown in Figure 1.

Figure 1.- Reference Model Controller

Looking under the mask, controller internal

structure is shown in Figure 2.

Figure 2.- Internal Structure of the Neural Controller by

Reference Model.

Note that, actually, there are two neural networks:

the plant identification one and the other, which

realize the controller function. It is very important

to note the necessity of identifying the plant, first,

before proceeding with the neural controller

training.

As it can be observed, controller requires the

reference model output as an input in order to

establish the behavior the plant has to develop. A

good description of the plant we want to control is

needed as input of the neural controller, in order to

it can compare the desired output with the actual

one.

A description of the plant to be controlled is also

necessary as a controller’s input. These inputs and

the previous training of the controller allow it to

output a control signal which will be inputted to

the plant jointly possible external disturbances, if

they would exist. In this particular case,

disturbances are assumed to be null. Training

technique used here is called in the Matlab context

as trainbfgc [2], due to its promoters, Broyden,

Fletcher, Goldfarb y Shannon (BFGS). This

technique is of the, so-called, quasi-Newton back-

propagation type, which are suitable for training

neural controller base in reference models.

Before proceeding to train the controller, it is

required to do a previous step, which consists of

the plant identification, i.e., the recollection of

information about dynamic plant to be controlled.

Figure 3.- Plant Identification Input Data.

At this point, it is necessary to set up parameters

like hidden neurons number of the neural network

that will identify the plant. In addition, the

sampling time T, minimum and maximum time

for taking samples during training, and the

minimum and maximum plant input signal values

in order to establish the inputs range for the

controller. Figure 3 shows the input data used to

identify the plant.

Once this data values are inputted, a training data

generation is required. Note that in this dialog

box, the file name of the Matlab simulink diagram

which contains the plant description to be

identified has to be entered (in this case, it is

called planta2.mdl).

After generating the training data, we have to

continue the identification neural network

training, by pressing the network training button.

Afterwards, input and output data are displayed on

the screen. Process performance is measured

through the MSE index, which behavior is shown

in Figure 4. To identify the plant, a Levenberg-

Marquandt (trainlm) technique is used.

Figure 4.- Performance behavior of the Identification Plant

process.

Note, also, that the Matlab stipulated goal for the

performance index is zero. In this case, the

reported value for that index was 4.69547-011,

which is good enough for all practical purposes.

Identification process gives us the results shown

in Figure 5.

Furthermore, Matlab realize two steps: firstly, it

trains the neural network with the input data

shown before. Secondly, it tests the consistency of

the results, using random data, to assure it is

different from the known data used before.

Figure 5.- Samples of input and output data taken during the

identification process

Figure 7 shows the first step results and Figure 8

presents the second step ones.

Figure 6.a.- Input Output Data for NN Model Reference

Controller.

Note that, as we can expect, the output does not

follow the input exactly, due, between other

factors, to the inertia and time constants of the

plant. In fact, very short input variations are not

“seen” by the system at all.

Figure 6.b.- Training Data for Model Reference controller.

If we consider that it is a good enough

approximation to the plant behavior, we accept it

and proceed with the rest of the controller

training process.

Figure 7.- Test results.

Next, we proceed with the training controller. As

we mentioned before, Matlab uses a training

technique named trinbfgc, which reported the

performance shown in Figure 9

Figure 8.- Results for reference model validation.

Controller training process stops after 40 epochs

and, on the Matlab console, appears the following

information:

TRAINBFGC-srchbacxc, Epoch 50/50, MSE
0.0601074/0, Gradient 3.77025e+007/1e-
006, dperf -1.42148e+015 tol 0.0005 delta
0.01 a 0
TRAINBFGC, Maximum epoch reached,
performance goal was not met.

Figure 9.- Controller training performance index behavior

using trainbfgc.

Performance is measured through the Médium
Square Error, MSE, which is calculated by:

2

1

2

1))()((
1

)(
1

kakt
Q

te
Q

MSE Q
k

Q
i −Σ=Σ=

==
 (3)

where Q is the number of input/output pairs used

for training purposes.

},{},...,,{},,{ 2211 QQ tptptp (4)

t(k) is the k-th plant output value for a given input

value p(k), and a(k) is the k-th output expected

value. After the MSE is calculated, a minimum

square algorithm (LMS), is used to adjust weights

and biases of the neural network associated with

the controller.

Because of the stipulated zero goals was not

reached in 40 training epochs, we can opt to

continue the training process from this point by

selecting the Use Cumulative Training option, to

try to reach a performance index value closer to

the goal.

Figures 10, 11 and 12 show the results reported

for the plant behavior after be submitted to the

controller action, during controller training phase.

Figure 10.- Response of the plant to the neural controller

action.

Testing and validation data and respective output

of the plant are shown in these figures. Note that,

although the general behavior of the reference

model is followed by the plant operating under

control of the neural controller, some ’chattering’

appears on the ridges of the response signal. It will

also appear on the ‘real’ plant response.

Figure 11. Training data for neural controller

Figure 12. Testing data for NN Model Reference Control

After the end of the controller training process,

results should be saved, and the controller block is

applied to the ‘real’ plant as shown in Figure 13.

Figure 13.- Simulation Diagram for simulink.

Figure 14 shows the internal structure of the

model that is being used as reference.

Figure 14.- Reference Model Simulation Diagram.

4. RESULTS ANALYSIS.

Inputting a step of amplitude 1 to the overall

system, i.e., the plant plus the neural controller

and the reference model, as appears in Figure 11,

we obtain the results displayed on Figure 15.

Figure 15.- Response of the Plant (down)

and of the Reference Model (up)

As we can see, the dynamic of both plant and

reference model are very close, but there exist a

steady state error, which can be explained by

remembering that first order systems controlled by

a proportional control law only, as the one used as

reference model, presents an avoidable steady

state error: In fact, as we can see on Figure 15, the

output value of the reference model is 0.9524,

instead of 1

Figure 16.- Difference between plant output and

model output.

. On the other hand, the performance index

reported by the training process did not reach the

goal, as seen in Figure 9.

As we mentioned before, more number of training

epochs can report a performance index closer to

the stipulated goal, which surely lead us to get a

plant output closer to the model one.

5. CONCLUSSION.

This work presents an application example of the

neural controller based on reference model, as has

been treated for researchers such as Prof. Marios

Polycarpou [3], of the Southern California

University,

From the results reported by simulations, we can

extract some conclusions.

1. It is really possible to synthesize and

implement a control law based on the

use of neural networks which, properly

trained, may reproduce a model output

from a plant for which we don’t dispose

of an adequate mathematical description,

as a whole, or no description at all is

available, using characteristic input and

output data points, which can be used to

train a neural network.

2. The adequate joint behavior of the

overall system will depend on factors

like model selection, which dynamic

should be well known by the designer

and its dynamics should be similar to the

plant which we want to control.

3. Previous comment implies the necessity

for the designer to know the plant

dynamic as closely as possible, if not

from a mathematical point of view, at

least by his/her own experience

operating that plant.

4. To get a better plant response, the

designer should also choose a good

reference model that, for example,

doesn’t present steady state error.

Other considerations can also be taken into

account when treating with neural networks,

such as the training technique that will be

used for both the controller and the plant

identification process. However, other

techniques could need much more hardware

and software resources than the ones used

here.

6. REFERENCES

[1] M. Goire, J. Martín Flores, Á. M. and
RoDilla, I.S. Raruch. Neural Control by

Reference Model @2003, CJC- JPN. ISSN
1405-5546 Computación y Sistemas Vol. 6 No.

4 pp. 284 – 292. México, 2003.

[2] H. Demuth, M. Beale and M. Hagan. Neural

Networks Toolbox 5. User’s Guide.

MathWorks, Inc. Revised in September 2006.

 [3] M. Polycarpou y P. Ioannou. Identification

and Control of Nonlinear Systems using Neural

Networks: Design and Stability Analysis.

Téchnical Report published in September 1991.

Souther Californi University, Los Angeles,

USA. 44 pages. Available at

http://citeseer.ist.psu.edu/524649.html. Visited

on 06/22/2007.

http://citeseer.ist.psu.edu/524649.html

