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Abstract.  Plant or process identification in order 

to put it under control has always been a problem 

hard to face up, due to the no linearity of a real 

process. In this work, Neural Control theory is 

applied to identify and control a plant conformed 

by two subsystems of second order which 

alternate their operation on a constant time base. 

Firstly, a neural network is trained to learn the 

plant behavior. Once trained, this network is 

integrated to the rest of the system in order to 

jointly operate with another neural network which 

will serve as a controller. Obtained results permit 

us assure the actual possibility of using neural 

networks to identify and controlling this kind of 

plant. However, special interest must be pay in the 

controller fine adjustment, in order to minimize 

the steady state error. 

Key words: Neural Control, Plant Identification, 

Neural Controller Training. 

 

 
1. INTRODUCTION 
 

Present work consists of a neural control 

application on a non linear plant, based on the 

reference model technique. Firstly, a neural 

network is designed to identify the plant, i.e., the 

neural network ‘learns’ the plant behavior through 

some kind of training, and this knowledge is then 

used to generate an output signal which is 

compared with the actual plant output. This 

comparison is fed back and inputted to another 

neural network which will act as the controller. 

This neural controller is designed in such a way 

that makes the plant output to follow the output of 

a reference model, which dynamics be well 

known. Plant under consideration is described in 

Sec 2, and it is conformed by two subsystems 

which alternate each 50s [1]. In Sec. 2, the plant 

will be described, in such a way a proper neural 

network design and parameterization be possible 

to do, as explained in Sec. 3. Another neural 

network will be trained in order to operate as a 

plant’s controller, taking into account the behavior 

of a reference model, which dynamic is well 

known. Results are obtained using Matlab 7.1, 

through numerical simulations. They are presented 

and analyzed in Sec. 4. Finally, in Sec. 5, some 

conclusions are presented. It is important to note 

that the plant definition describe a highly 

nonlinear system over which neural control 

strategy looks appropriate to be used for control 

purposes. 

 

 

2. PLANT DESCRIPTION. 
 

Plant under consideration has two subsystems 

which alternate each 50s. Subsystems 1 and 2 are 

given by the equations systems (1) and (2), 

respectively: 
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where ][ 21 xx  is the so-called state vector; y 

designates the output plant; u is a scalar control 

function. Both, subsystem 1 and 2, are of second 

order we can see the subsystems poles and zeros 

in order to find out their particular dynamics. As 

we know from the control theory, poles can be 

calculated by solving det(sI-A)=0, where A 

designates the so-called system matrix or the state-
space matrix. In doing so, we get that the poles of 

the subsystem 1 are }0,1{2,1 −=s  and subsystem 

2 has two identical poles in -1. On the other hand, 
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zeros of subsystem 1 is at ∞ , whereas the second 

subsystem has zeroes at }1,{2,1 −∞=z . 

Precisely, the zero located in -1 will cancel the 

pole located at the same value and, in 

consequence, this subsystem will behave as a first 

order one. 

 

  

3.  NEURAL CONTROLLER DESIGN  
BASED ON  REFERENCE MODEL. 

 

There are various neural control strategies.  

Neural Networks Toolbox of Matlab 7.1 offers 

three of these strategies: Model Reference 

Controller, NARMA-L2 controller type and 

Predictive Neural Network (NN Predictive). 

Here, we will utilize the Reference Model one that 

consists in choosing a plant model which 

description and dynamic are well known in order 

to make the neural networks which will act as a 

controller learns, through proper training, its 

behavior, in order to drive the plant to behave as 

the reference model. A generic neural controller 

based in model reference simulink diagram is 

shown in Figure 1. 

 

 
Figure 1.- Reference Model Controller 

 

Looking under the mask, controller internal 

structure is shown in Figure 2. 

 

 
Figure 2.-  Internal Structure of the Neural Controller by 

Reference Model. 

Note that, actually, there are two neural networks: 

the plant identification one and the other, which 

realize the controller function. It is very important 

to note the necessity of identifying the plant, first, 

before proceeding with the neural controller 

training. 

  

As it can be observed, controller requires the 

reference model output as an input in order to 

establish the behavior the plant has to develop. A 

good description of the plant we want to control is 

needed as input of the neural controller, in order to 

it can compare the desired output with the actual 

one. 

 

A description of the plant to be controlled is also 

necessary as a controller’s input. These inputs and 

the previous training of the controller allow it to 

output a control signal which will be inputted to 

the plant jointly possible external disturbances, if 

they would exist. In this particular case, 

disturbances are assumed to be null.  Training 

technique used here is called in the Matlab context 

as trainbfgc [2], due to its promoters, Broyden, 

Fletcher, Goldfarb y Shannon (BFGS). This 

technique is of the, so-called, quasi-Newton back-

propagation type, which are suitable for training 

neural controller base in reference models. 

 

Before proceeding to train the controller, it is 

required to do a previous step, which consists of 

the plant identification, i.e., the recollection of 

information about dynamic plant to be controlled. 

 

 
Figure 3.- Plant Identification Input Data. 

 

At this point, it is necessary to set up parameters 

like hidden neurons number of the neural network 

that will identify the plant. In addition, the 



sampling time T, minimum and maximum time 

for taking samples during training, and the  

minimum and maximum plant input signal values 

in order to establish the inputs range for the 

controller. Figure 3 shows the input data used to 

identify the plant. 

 

Once this data values are inputted, a training data 

generation is required. Note that in this dialog 

box, the file name of the Matlab simulink diagram 

which contains the plant description to be 

identified has to be entered (in this case, it is 

called planta2.mdl). 
 

After generating the training data, we have to 

continue the identification neural network 

training, by pressing the network training button. 

Afterwards, input and output data are displayed on 

the screen. Process performance is measured 

through the MSE index, which behavior is shown 

in Figure 4. To identify the plant, a Levenberg-

Marquandt (trainlm) technique is used. 

 

 
Figure 4.- Performance behavior of the Identification Plant 

process. 

 

Note, also, that the Matlab stipulated goal for the 

performance index is zero. In this case, the 

reported value for that index was 4.69547-011, 

which is good enough for all practical purposes.  

 

Identification process gives us the results shown 

in Figure 5. 

 

Furthermore, Matlab realize two steps: firstly, it 

trains the neural network with the input data 

shown before. Secondly, it tests the consistency of 

the results, using random data, to assure it is 

different from the known data used before. 

  

 
Figure 5.- Samples of input and output data taken during the 

identification process   

 

Figure 7 shows the first step results and Figure 8 

presents the second step ones. 

 

 
Figure 6.a.- Input  Output Data for NN Model Reference 

Controller. 

 

Note that, as we can expect, the output does not 

follow the input exactly, due, between other 

factors, to the inertia and time constants of the 

plant. In fact, very short input variations are not 

“seen” by the system at all. 

 



 
Figure 6.b.- Training Data for Model Reference controller. 

 

If we consider that it is a good enough 

approximation to the plant behavior, we accept it 

and  proceed with the rest of the controller  

training process. 

 

 
Figure 7.- Test results. 

 

Next, we proceed with the training controller. As 

we mentioned before, Matlab uses a training 

technique named trinbfgc, which reported the 

performance shown in Figure 9 

 

 
Figure 8.- Results for reference model validation. 

 

 

Controller training process stops after 40 epochs 

and, on the Matlab console, appears the following 

information: 
 
TRAINBFGC-srchbacxc, Epoch 50/50, MSE 
0.0601074/0, Gradient 3.77025e+007/1e-
006, dperf -1.42148e+015 tol 0.0005 delta 
0.01 a 0  
TRAINBFGC, Maximum epoch reached, 
performance goal was not met. 
 

 
Figure 9.- Controller training performance index behavior 

using trainbfgc. 

 

Performance is measured through the Médium 
Square Error, MSE, which is calculated by: 
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where Q is the number of input/output pairs used 

for training purposes. 

 

},{},...,,{},,{ 2211 QQ tptptp  (4) 

 

t(k) is the k-th plant output value for a given input  

value p(k), and  a(k) is the k-th output expected 

value. After the MSE is calculated, a minimum 

square algorithm (LMS), is used to adjust weights 

and biases of the neural network associated with 

the controller. 

 

Because of the stipulated zero goals was not 

reached in 40 training epochs, we can opt to 

continue the training process from this point by 

selecting the Use Cumulative Training option, to 

try to reach a performance index value closer to 

the goal. 

 

Figures 10, 11 and 12 show the results reported 

for the plant behavior after be submitted to the 

controller action, during controller training phase.  

 

 
Figure 10.- Response of the plant to the neural controller 

action. 

 

Testing and validation data and respective output 

of the plant are shown in these figures. Note that, 

although the general behavior of the reference 

model is followed by the plant operating under 

control of the neural controller, some ’chattering’ 

appears on the ridges of the response signal. It will 

also appear on the ‘real’ plant response. 

 

 
Figure 11. Training data for neural controller  

 

 
Figure 12. Testing data for NN Model Reference Control 

 

After the end of the controller training process, 

results should be saved, and the controller block is 

applied to the ‘real’ plant as shown in Figure 13. 

 

 
Figure 13.- Simulation Diagram for simulink.  

 



Figure 14 shows the internal structure of the 

model that is being used as reference. 

 

 
Figure 14.- Reference Model Simulation Diagram.  

 

 

4. RESULTS ANALYSIS. 
 

Inputting a step of amplitude 1 to the overall 

system, i.e., the plant plus the neural controller 

and the reference model, as appears in Figure 11, 

we obtain the results displayed on Figure 15.   

 

 
Figure 15.- Response of the Plant (down)  

and of the Reference Model (up) 

 

As we can see, the dynamic of both plant and 

reference model are very close, but there exist a 

steady state error, which can be explained by 

remembering that first order systems controlled by 

a proportional control law only, as the one used as 

reference model, presents an avoidable steady 

state error: In fact, as we can see on Figure 15, the 

output value of the reference model is 0.9524, 

instead of 1 

 

 
Figure 16.- Difference between plant output and 

model output. 

 

. On the other hand, the performance index 

reported by the training process did not reach the 

goal, as seen in Figure 9. 

 

As we mentioned before, more number of training 

epochs can report a performance index closer to 

the stipulated goal, which surely lead us to get a 

plant output closer to the model one. 

 

 

5. CONCLUSSION. 
 

This work presents an application example of the 

neural controller based on reference model, as has 

been treated for researchers such as Prof. Marios 

Polycarpou [3], of the Southern California 

University, 

 

 

From the results reported by simulations, we can 

extract some conclusions. 

 

1. It is really possible to synthesize and 

implement a control law based on the 

use of neural networks which, properly 

trained, may reproduce a model output 

from a plant for which we don’t dispose 

of an adequate mathematical description, 

as a whole, or no description at all is 

available, using characteristic input and 

output data points, which can be used to 

train a neural network. 

2. The adequate joint behavior of the 

overall system will depend on factors 

like model selection, which dynamic 

should be well known by the designer 

and its dynamics should be similar to the 

plant which we want to control. 

3. Previous comment implies the necessity 

for the designer to know the plant 

dynamic as closely as possible, if not 

from a mathematical point of view, at 

least by his/her own experience 

operating that plant.  

4. To get a better plant response, the 

designer should also choose a good 

reference model that, for example, 

doesn’t present steady state error. 

 

Other considerations can also be taken into 

account when treating with neural networks, 

such as the training technique that will be 

used for both the controller and the plant 

identification process. However, other 

techniques could need much more hardware 



and software resources than the ones used 

here. 
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